math 发表于 2025-05-26 ∫abf(x) dx = F(b) − F(a) ∫ab[αf(x) + βg(x)] dx = α∫abf(x) dx + β∫abg(x) dx ∫abf(g(x))g′(x) dx = ∫g(a)g(b)f(u) du 说明: 令u=g(x),则du=g’(x)dx. ∃c ∈ [a, b], ∫abf(x) dx = f(c)(b − a) ∫0π/2sin x dx = 1